Data-driven subgrid-scale modeling for convection-dominated concentration boundary layers

Andre Weiner, Dennis Hillenbrand, Holger Marschall, Dieter Bothe
Slides available at: andreweiner.github.io/reveal.js/ofw2019_sgs_modeling.html

Outline

  1. Mass transfer at rising bubbles
  2. Subgrid-scale (SGS) modeling
  3. Data-driven SGS modeling
  4. Validation
  5. Outlook
  6. Summary

Mass transfer at rising bubbles

water/air: $d_{eq}=3~mm$
water/air: $d_{eq}=5~mm$

High fidelity data for closure models

euler_lagrange

Image source: appliedccm.com/portfolio-item/bubble

High Péclet number problem

high_pe

Image source: U. D. Kück et al.: Analyse des Grenzschichtnahen Stofftransports an frei aufsteigenden Gasblasen. CIT (2009), 1599-1606

Specimen calculation

$d_b=1~mm$ water/oxygen at room temperature

  • $Pe = Sc\ Re = U_b d_b/D = 10^4 ... 10^7 $
  • $$ Re\approx 250;\quad \delta_h/d_b \propto Re^{-1/2};\quad\delta_h\approx 45~\mu m $$
  • $$ Sc\approx 500;\quad \delta_c/\delta_h \propto Sc^{-1/2};\quad\delta_c\approx 2.5~\mu m $$

$\delta_c/\delta_h$ typically 10 ... 100

Subgrid-scale modeling

What happens if the mesh is not fine enough?

lin_approx
A. Weiner, D. Bothe (2017)

Solution I

lin_approx

$$ c(x,\delta) = c_\Sigma + (c_\infty - c_\Sigma) \mathrm{erf}(x/\delta) $$

Solution II

cube_sgs

$$ \langle c \rangle_V \overset{!}{=} \frac{1}{V}\int_V \left[c_\Sigma + (c_\infty - c_\Sigma) \mathrm{erf}(x/\delta)\right] \mathrm{d}x $$

Workflow

cube_sgs

Surfactant influence

cube_sgs

C. Pesci, A. Weiner, H. Marschall, D.Bothe (2018)

Surfactant + mass transfer

cube_sgs

A. Weiner et al. (2019)

Complex reactions?

cube_sgs

$A+B\rightarrow P\quad A+P\rightarrow S$

Data-driven SGS modeling

cube_sgs

A. Weiner, D. Hillenbrand, H.Marschall, D. Bothe (2019)

Data generation

mesh

IBV problems

  • Single phase incompressible Navier-Stokes, inletOutlet velocity, free slip at $ \Sigma $, $\mathbf{u}(t=0)=\mathbf{0}$
  • $$\partial_t c + \nabla \cdot (\mathbf{u}c-D\nabla c) = -kc$$ $$ c_\Sigma (t) = 1,\quad c_\Omega(t=0) = 0 $$

Parameter variation

mesh

132 simultions, $70~GB$ raw data, $16~GB$ reduced

Feature engineering

mesh

Sequential backward selection

sgs

MLP models

  • three models (PyTorch), one model per label
  • 353 parameters per model
  • 30min training time on a GTX 960
sgs

Model errors

sgs

Data compression: $16GB\rightarrow 3\times 353$ parameters

Validation

sgs

Inference

  • models loaded at run-time
  • overhead: ~$0.2\%$ per time step
  • no iterative inversion
  • overhead should be even lower in 3D

Local Sherwood number

local_sh

Global Sherwood number

global_sh

Outlook

local_sh

Summary

workflow

THE END

Thank you for your attention!

Get in touch: weiner@mma.tu-darmstadt.de

Time for discussion ...