Andre Weiner, Institute of Fluid Mechanics
model categories
historical perspective III
approach to derive equations (Wilcox p. 41)
$$ \overline{u^\prime_i N(u_j) + u^\prime_j N(u_i)} = 0$$
$$N(u_i) = \partial_t u_j + \partial_i (u_iu_j) + \partial_j p - \partial_i (\nu (\partial_i u_j + \partial_j u_i)) = 0$$
favorable attributes
unfavorable attributes
viscoelastic analogy
$$\overline{u_i^\prime u_j^\prime} = f(\overline{S}_{ij}, k, \varepsilon, \dots)$$
$$\overline{u_i^\prime u_j^\prime} = f(\overline{S}_{ij}, D_t\overline{S}_{ij}, k, \varepsilon, \dots)$$
modeling guided by concepts of frame invariance and realizability
generalized eddy viscosity hypothesis
$$ \begin{aligned} -\overline{u_i^\prime u_j^\prime} &= 2\nu_t \overline{S}_{ij} - \frac{2}{3} k \delta_{ij}\\ &- C_1\nu_t \frac{k}{\varepsilon}(\overline{S}_{ik}\overline{S}_{kj}-\frac{1}{3}\overline{S}_{kl}\overline{S}_{kl}\delta_{ij})\\ &- ... \end{aligned} $$
quadratic and cubic expansions available
favorable attributes
unfavorable attributes