Andre Weiner, Institute of Fluid Mechanics
model categories
historical perspective I
RANS equation (momentum)
$$ \partial_t \overline{\mathbf{u}} + \nabla\cdot (\overline{\mathbf{u}}\overline{\mathbf{u}}) = -\nabla \overline{p} + \nabla\cdot \left(\nu \left(\nabla\overline{\mathbf{u}}+\nabla\overline{\mathbf{u}}^T \right) - \overline{\mathbf{u}^\prime\mathbf{u}^\prime}\right) $$
assumptions: incompressible, const. density, Newtonian fluid
mean strain rate tensor $$2\mathbf{S} = \nabla\overline{\mathbf{u}}+\nabla\overline{\mathbf{u}}^T$$
Reynolds stress tensor $$\mathbf{R} = - \overline{\mathbf{u}^\prime\mathbf{u}^\prime}$$
turbulence kinetic energy $$2k=-\mathrm{tr}(\mathbf{R})$$
observations
$\rightarrow$ Boussinesq (1877): Reynolds stress might be proportional to mean rate of deformation
first trial
$$\mathbf{R}=-\overline{\mathbf{u}^\prime\mathbf{u}^\prime} = \nu_t 2\mathbf{S} = \nu_t \left(\nabla\overline{\mathbf{u}}+\nabla\overline{\mathbf{u}}^T\right)$$
$\nu_t$ - turbulent (eddy) viscosity
Issues?
$$ \mathbf{R} = \underbrace{-\overline{\mathbf{u}^\prime\mathbf{u}^\prime} + \frac{2}{3} k \mathbf{I}}_{\mathbf{R}_{dev}} - \underbrace{\frac{2}{3} k \mathbf{I}}_{\text{isotropic}} $$
$$ \mathbf{R}_{dev} = \nu_t 2 \mathbf{S} = \nu_t\left(\nabla\overline{\mathbf{u}}+\nabla\overline{\mathbf{u}}^T\right) $$
$$ \mathbf{R} = \nu_t 2 \mathbf{S} - \frac{2}{3} k \mathbf{I} $$
Which implicit assumption about $\nu_t$ have we made?
$$ D_t\overline{u} = -\nabla \overline{p} + \nabla\cdot \left(\nu 2 \mathbf{S} + \nu_t 2 \mathbf{S}-\frac{2}{3}k\mathbf{I}\right) $$ $$ D_t\overline{u} = -\nabla \tilde{\overline{p}} + \nabla\cdot \left(\nu_{eff} \left(\nabla\overline{\mathbf{u}}+\nabla\overline{\mathbf{u}}^T \right)\right) $$
with $\tilde{\overline{p}} = \overline{p}+\frac{2}{3}k$ and $\nu_{eff} = \nu + \nu_t$
passive scalar $\varphi$
$$ -\overline{u_i^\prime\varphi^\prime} = \Gamma_t \partial_i \overline{\varphi} $$
$\Gamma_t$ - turbulent/eddy diffusivity
$$ \partial_t \overline{\varphi} + \nabla\cdot (\overline{\mathbf{u}}\overline{\varphi}) = \nabla \cdot (\Gamma_{eff}\nabla \overline{\varphi}) $$
$\Gamma_{eff} = \Gamma + \Gamma_t$ - effective diffusivity
equivalence to molecular heat/mass transport
$Sc = \nu/D$ and $Pr = \nu/\alpha$
$$ \sigma_t = \nu_t / \Gamma_t $$
$\sigma_t$ - turbulent Schmidt/Prandtl number; around unity
How to determine $\nu_t$?
How do Reynolds stresses contribute to the mean momentum balance in a shear flow?
Prandtl's mixing length model (1925)
$$ \nu_t = l_m^2 |\partial_y \overline{u}_x | $$
Reynolds shear stress for shear layer
$$ R_{xy} = \nu_t \partial_y \overline{u}_x = l_m^2 |\partial_y \overline{u}_x | \partial_y \overline{u}_x $$
short comings
other algebraic eddy viscosity models
distinction between inner and outer layer near walls; slightly more general; rarely used in practice nowadays; read more