Andre Weiner, Richard Semaan
TU Braunschweig, ISM, Flow Modeling and
Control Group
Euromech Colloquium 612, March 30, 2022
Slice of local Mach number $Ma$; $Re_\infty=10^7$, $Ma_\infty=0.75$, $\alpha=4^\circ$.
Unsteady flow and interaction phenomena at high speed stall conditions
Improved understanding and prediction of flight envelop via:
Modal decomp. = spatial structures + temp. behavior
spatial mode
temporal coefficient
Spectra resulting from standard dynamic mode decomposition (DMD); influence of rank parameter.
Spectra resulting from standard dynamic mode decomposition (DMD); influence of rank parameter.
Problem - determining hyperparameters manually is not always an option:
$\rightarrow$ need for robust automated workflow
The state vector $\mathbf{x}_n$:
$\rightarrow$ $\mathbf{x}_1$, $\mathbf{x}_2$, ..., $\mathbf{x}_N$
$N$ - number of snapshots
Important: non-uniformly sampled fields should be weighted with square-root of volume/area!
Definition of data matrices:
$$ \mathbf{X} = \left[ \begin{array}{cccc} | & | & & | \\ \mathbf{x}_1 & \mathbf{x}_2 & ... & \mathbf{x}_{N-1} \\ | & | & & | \\ \end{array}\right],\quad \mathbf{X}^\prime = \left[ \begin{array}{cccc} | & | & & | \\ \mathbf{x}_2 & \mathbf{x}_3 & ... & \mathbf{x}_{N} \\ | & | & & | \\ \end{array}\right] $$
$\mathbf{x}_n$ - state vector snapshot at timestep $n$
Singular value decomposition (SVD):
$$ \underset{\tilde{\mathbf{X}}, rank(\tilde{\mathbf{X}})=r}{\mathrm{argmin}} ||\mathbf{X}-\tilde{\mathbf{X}}||_2 = \mathbf{U}_r\mathbf{\Sigma}_r\mathbf{V}_r^\ast $$
Dynamic mode decomposition (DMD):
$$ \underset{\mathbf{A}}{\mathrm{argmin}} ||\mathbf{X}^\prime-\mathbf{AX}||_2 = \mathbf{X}^\prime\mathbf{V}\mathbf{\Sigma}^{-1}\mathbf{U}^\ast $$
$\rightarrow r$ is a DMD hyperparameter!
How to choose $r$?
Optimizing mode amplitudes:
$$ \underset{\mathbf{b}}{\mathrm{argmin}} ||\mathbf{X}-\mathbf{\Phi D}_\mathbf{b}\mathbf{V}_\lambda||_2 $$
More details: Sparsity-promoting DMD
How to select important modes?
$$ I_i = |\mathbf{\phi}_i|^2 \sum\limits_{j=1}^N b_i \lambda_i^{j-1} $$
More details: K. Kou and W. Zhang
Other tested DMD variants:
See also: pyDMD
Final recipe:
Implementation details: flowTorch - a Python library for the analysis and modeling of fluid flows
Setup motivated by exp. investigations of McDevitt and Okuno 1985:
Simulation approach in a nutshell:
Various views of the computational mesh.
Pressure coefficient $c_p$ at pre-onset conditions, 2D, $\alpha = 2^\circ$.
Pressure coefficient $c_p$ at post-onset conditions, 2D, $\alpha = 4^\circ$.
Influence of volume-weighting on left-singular vectors.
Influence of snapshots/cycle on dominant $\bar{f}$.
DMD buffet mode recon. based on surface $c_p$.
DMD buffet mode recon. based on slice of $u_x$.
Reconstruction of another dominant DMD mode; based on slice of $u_x$.
Iso-contours of reconstructed $|\mathbf{u}|$ for two dominant DMD modes.
github.com/AndreWeiner/naca0012_shock_buffet
{a.weiner|r.semaan}@tu-braunschweig.de