Andre Weiner
TU Dresden, Institute of fluid mechanics, PSM
These slides and most
of the linked resources are licensed under a
Creative Commons Attribution 4.0
International License.
Analyzing coherent structures in flows displaying transonic shock buffets
Reduced-order modeling of flow fields
What is a reduced-order model (ROM)?
ROMs for dynamical systems
$$ \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = F(\mathbf{x}(t), t, ...) $$
Definition of ROMs in this lecture:
$\mathbf{x}$ - full state, $\tilde{\mathbf{x}}$ - reduced state, $\hat{\mathbf{x}}$ - full state prediction
Data-driven ROMs:
ML for encoding/decoding and/or temporal evolution.
Criteria for good ROMs:
review of some DMD basics
$\rightarrow$ once $\mathbf{A}$ is known, the state at any $t_n$ may be predicted based on a given initial state $\mathbf{x}_1$
reconstruction of the full dataset
$$ \underbrace{ \begin{bmatrix} x_{11} & \ldots & x_{1N}\\ \vdots & \ddots & \vdots\\ x_{M1} & \ldots & x_{MN} \end{bmatrix} }_{\mathbf{M}} \approx \underbrace{ \begin{bmatrix} \phi_{11} & \ldots & \phi_{1r}\\ \vdots & \ddots & \vdots\\ \phi_{M1} & \ldots & \phi_{Mr} \end{bmatrix} }_{\mathbf{\Phi}} \underbrace{ \begin{bmatrix} b_1& & \\ & \ddots & \\ & & b_r \end{bmatrix} }_{\mathbf{D_b}} \underbrace{ \begin{bmatrix} \lambda_{1}^0 & \ldots & \lambda_{1}^{N-1}\\ \vdots & & \vdots\\ \lambda_r^0 & \ldots & \lambda_r^{N-1} \end{bmatrix} }_{\mathbf{V_\lambda}} $$
with $\mathbf{b} = \mathbf{\Phi}^{-1}\mathbf{x}_1$, $M$ - length of $\mathbf{x}$, $N$ - number of snapshots, $r$ - truncation rank
regular DMD
$\mathbf{X} = \left[ \mathbf{x}_1, \ldots, \mathbf{x}_{N-1} \right]^T$$$ \underset{\mathbf{A}}{\mathrm{argmin}}\left|\left| \mathbf{Y}-\mathbf{AX} \right|\right|_F $$
optimizedDMD
$\mathbf{\Phi_b}=\mathbf{\Phi}\mathbf{D_b}$$$ \underset{\mathbf{\lambda},\mathbf{\Phi}_\mathbf{b}}{\mathrm{argmin}}\left|\left| \mathbf{M}-\mathbf{\Phi}_\mathbf{b}\mathbf{V}_{\mathbf{\lambda}} \right|\right|_F $$
$\rightarrow$ "optDMD" problem is non-linear and non-convex
idea: borrow techniques from ML/DL
$\rightarrow$ refer to article for details
Test data with noise corruption.
Comparison of DMD reconstruction error.
Comparison of dominant eigenvalues; reference computed with clean data.
Early stopping prevents overfitting.
optimized DMD with sparsity promotion
$$ \underset{\mathbf{\lambda},\mathbf{\Phi}_\mathbf{b}}{\mathrm{argmin}}\left(\left|\left| \mathbf{M}-\mathbf{\Phi}_\mathbf{b}\mathbf{V}_{\mathbf{\lambda}} \right|\right|_F + \gamma_0 ||\mathbf{b}||_2\right) $$
$\rightarrow$ reduction to dominant dynamics
Cardinality of modes amplitudes and reconstruction error for increasing sparsity weight $\gamma_0$.
most common strategies
CNN-VAR-AE + LSTM; figure 2 from Zahn et al. (2023).